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Abstract
Many assume that the quality of students’ content knowledge can be connected to certain structu-
ral characteristics of concept maps, such as the clustering of concepts around other concepts, cyclical 
paths between concepts and the hierarchical ordering of concepts. In order to study this relations-
hip, we examine concept maps in electricity and magnetism drawn by physics teacher students and 
their instructors. The structural analysis of the maps is based on the operationalisation of important 
structural features (i.e. the features of interest are recognised and made measurable). A quantita-
tive analysis of 43 concept maps was carried out on this basis. The results show that structure and 
content are closely connected; the structural features of clustering, cyclicity and hierarchy can serve as 
quantitative measures in characterising structural quality as well as the quality of content knowledge 
in concept maps. These findings have educational implications in regard to fostering the teacher 
student’s organisation of knowledge and in monitoring the process of such organisation.

 
Introduction
In teaching and learning as well as in educational research  it is widely assume that graphical 
knowledge representation tools such as concept maps help students to organise their knowledge 
around the most important concepts and principles of the subject content (Novak & Gowin 1984; 
Ruiz-Primo & Shavelson, 1996; Ingeç, 2008; Nesbit & Adesope, 2006). Recent research focusing 
on the structure of the concept map suggests that a good understanding and the high quality of stu-
dents’ knowledge are reflected as interconnected and web-like structures (Vanides, Yin, Tomita & 
Ruiz-Primo, 2005; Ingeç, 2008; van Zele, Lenaerts & Wieme, 2004; Kinchin, Hay & Adams, 2000; 
Kinchin, De-Leij & Hay, 2005; Safayeni, Derbentseva & Cañas, 2005; Derbentseva, Safayeni & 
Cañas, 2007). The notion that structural features and the quality of students’ understanding may be 
connected warrants a closer examination of the structure of such maps. Furthermore, this notion 
also warrants an attempt to render the interesting structural features measurable.

Several studies have pointed out that in certain disciplines such as physics and biology the concept 
maps tend to be hierarchical - possibly reflecting a hierarchical ordering of concepts - whereas in 
other areas (e.g. chemistry) non-hierarchical maps are expected because the underlying structure 

Concept maps representing knowledge of physics: 
Connecting structure and content in the context 
of electricity and magnetism

MAIJA NOUSIAINEN* and ISMO T. KOPONEN
Department of Physics, University of Helsinki
maija.nousiainen@helsinki.fi
ismo.koponen@helsinki.fi
*) née Pehkonen

Maija Nousiainen (MSc) works in the Department of Physics, University of Helsinki, in The Finnish Graduate School of 
Mathematics, Physics and Chemistry. Her research activity focuses on the use and development of concept maps in physics 
teacher education. In addition to research, she has acted as an instructor in physics teacher courses since year 2006.

Ismo T. Koponen (PhD) works as a university lecturer in the Department of Physics, University of Helsinki. His research 
activities concentrate on Physics Education Research, but include also computational and statistical physics. Since 1999 he 
has taught advanced courses pre-service physics teachers in the Physics Department. In addition, he acts as a supervisor of 
MSc and PhD thesis done in physics education.



[156] 6(2), 2010

of knowledge is not necessarily hierarchical (Novak & Gowin, 1984; Zoller, 1990; Ruiz-Primo & 
Shavelson, 1996; van Zele et al., 2004). Moreover, other studies have suggested that topological 
features suh as chains, spokes and nets carry important information about the quality of know-
ledge represented in such maps not easily captured by straightforward quantitative methods of 
analysis. (Vanides et al., 2005; Kinchin et al., 2000, 2005; Ingeç, 2008). However, this study aims 
to show that the topological features of web-like structures are equally amenable to quantitative 
description.

Interconnectedness and cyclicity are characteristics of ways representing and arranging know-
ledge which allow the learner to proceed through paths in the conceptual space where learning 
takes place (Kinchin et al., 2000, 2005). Most of the research on concept maps views hierarchy 
and web-like connectedness as somehow separate (or even contradictory) features. This can be 
interpreted as a question of the design principles of the concept maps. If the design principles 
restrict the potential to express complex knowledge (e.g. a strict rule to form propositional node-
link-node connections as in traditional concept maps or mind maps), this will also narrow the 
cognitive space of learning. However, hierarchical organisation and interconnectedness need not 
be contradictory properties. Rather, they may well be coexistent, mutually supporting features.

A standard method to evaluate concept maps is to compare them to a “master map” (i.e. a map 
constructed by experts in the subject content, see Ruiz-Primo and Shavelson, 1996). In order to 
visualise the relevant topological features, it is useful to make the visual appearance of the maps 
comparable by removing the ambiguity associated with personal styles of graphical layout. This 
can be carried out by redrawing the maps so that the same rules for ordering the nodes are used 
in all cases.  The maps are redrawns with COMBINATORICA software (Pemmaraju & Skiena, 
2006) and contain the same information as the original ones (i.e. the original and the redrawn 
maps are isomorphic representations of the same node-link-node systems).
In this study, we develop a method of analysis which captures the important qualitative features 
of concept maps: the hierarchical ordering of concepts (how one concept is sub-ordinate to other 
concepts), the clustering of concepts around other concepts (local interconnectedness) and cycli-
cal paths between concepts (global interconnectedness). The concept maps analysed here were 
originally designed for purposes of representing knowledge structures in physics (electricity and 
magnetism) and were produced in an advanced-level the physics teacher education (third and 
fourth year of studies). The concept maps were constructed by following design principles where 
concepts here include also quantities and laws, and where links represent procedures which in-
clude either certain types of quantitative experiments in physics. In this study we further develop 
the theoretical method of analysis and apply the method to a more extensive sample of concept 
maps than in our previous study (Koponen & Pehkonen, 2010).

Design principles of concept maps
In most research, questions of structure are limited to concepts maps, where connections are 
simple propositions (Novak & Gowin, 1984; Ruiz-Primo & Shavelson, 1996; McClure, Sonak 
& Suen, 1999) and are thus limited only to a certain type of propositional knowledge. However, 
generalised rules are needed in order to represent more complex relations and relational structu-
res. Previously, we introduced design principles which rest on the use of quantitative experiments 
and models (Koponen & Pehkonen, 2010; Pehkonen, Koponen & Mäntylä, 2009; Koponen & 
Mäntylä, 2006).

In the quantitative experiment, the concept is operationalised (i.e. rendered measurable through 
pre-existing concepts). For example, the operationalisation of Coulombs’ law requires the con-
cept of force and charge, whereas the concept of the electrical field rests on force, charge and 
Coulomb’s law, and so on. This mutual dependence of concepts means that a network of concepts 
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is woven through operationalisation. Although many different types of experiments are relevant to 
teaching and learning, quantitative experiments play a special role because they can serve to sup-
port the construction of new concepts and new relations between concepts (laws) on the basis of 
concepts already known ones (Koponen & Mäntylä, 2006). In such experiments, a new concept 
or law is always constructed sequentially, starting from those that already exist and which also 
provide the basis for an experiment’s design and interpretation. 

The results of the experiments and how they modify knowledge structures are expressed and repre-
sented in terms of models. Therefore, in addition to experiments, models are also core components 
of knowledge structures, as well as of knowledge itself. For example, the definition of the electrical 
field can be seen as a model which breaks the force between two interacting charges into one part 
which causes the field (the charge as a source) and another part which experiences the field (the 
other charge). Another example is the model of a homogeneous field, extensively used as a model 
in introductory electricity. Typically, a model may be an idealised and symbolic representation or a 
description of dependencies found in an experiment or that should provide explanations and pre-
dictions of regularities found in experimental data (Koponen, 2007; Sensevy, Tiberghien, Santini, 
Laube, & Griggs, 2008). 

Consequently, the design of concept maps discussed here is based on a special type of selection of 
nodes (concepts) and special types of links connecting the nodes.  The nodes can be:

1. Concepts or quantities.
2. Laws (particular or general).

Of these elements, laws could be taken as particular experimental laws or law-like predictions in 
specific situations (derived from a theory). General laws are more fundamental principles (e.g. 
principles of conservation). In both cases, laws can be expressed as relations between concepts. 
The links are thus: 

3. Experimental procedures (an operational definition). 
4. Modelling procedures, which can be deductive models or definitions in terms of a model- 

type relations.

These procedures play a central role in providing order and organisation to the whole conceptual 
structure. The basic idea is that the design principles guide the construction process of the map. 
It should be noted that students must ensure that every link they draw on the map is a procedure 
(either experimental or modelling) and justify them separately in a written report. Finding physi-
cally unacceptable connections in the students’ concept maps is therefore is unlikely: rather, their 
maps would contain only connections with a variable degree of justification as the poor quality 
reflects lack of connections and vagueness in justifying them. 

The research setup and the research questions
The design principles explicated as elements 1-2 and rules 3-4 served to construct concept maps 
during physics teacher education courses over three academic years from 2006 to 2009. The co-
urses were similar; each was of seven weeks’ duration and focused on questions concerning the 
conceptual structure of physics. Here we discuss the structure of concept maps (the total number 
of student and instructor maps was 43) made during the course in the context of electricity and 
magnetism. During the teaching sequence, the students produced an initial concept map, and later, 
after instruction and group discussions, final maps (the total number of student maps was 39). The 
course instructors collaboratively produced four concept maps to plan the teaching, the content of 
the maps closely followed the content of the standard introductory course on electromagnetism. 
Of these instructor-made maps, one small map with n = 17 concepts (i.e. nodes) and three large 
maps with n = 34 concepts were constantly updated so that they contained all physically well-
motivated and correct connections found in the student made concept maps throughout the cour-

Concept maps representing knowledge of physics



[158] 6(2), 2010

ses.. In this article, these maps will be called “master maps”. In constructing the maps, the choice 
of concepts was restricted to a given set of elements, chosen to be either n = 17 (15 student maps 
and 1 master map) or n = 34 (24 student maps and 3 master maps), but the number of procedures 
was unrestricted, provided they were types 3 or 4. The visual outlook of the maps appears later, 
in Figures 2 and 3. 

It should be noted that students produced the maps in a rather advanced stage of their studies. 
The students were familiar with basic physics and the basic concepts. Concept mapping during the 
teaching sequence therefore served as a learning tool to organise the content already known and 
to transform previous knowledge into a more functional form. Additional details about concept 
map construction and course practices as well as collaboration between students is discussed in 
more detail elsewhere (Koponen & Pehkonen, 2010; Pehkonen et al., 2009). 

The basic question is how the structure of the concept map can be related to the content of the 
knowledge the map is intended to represent. In order to answer the basic question, the qualita-
tive features must be made measurable, and suitable variables must be defined. In this article, the 
variables that measure the structural features are called structural variables. Thus, the research 
questions posed here are as follows:  

1. Which structural variables can serve to indicate important qualitative features?  
2. How are structural variables connected to the content of the maps?
3. How can we use structural variables to classify concept maps and their quality? 

Answering the first question requires reducing the qualitative notions of being web-like and in-
terconnected to properties of clustering, cyclicity and hierarchy, which can then be measured and 
ultimately operationalised in the form of six structural variables. Such structural analysis reveals 
how concepts are connected. It is worth remembering that all links represented in the maps re-
present “correct” knowledge in the sense that students have been able to justify the connections 
in terms of procedures. Therefore, the question of quality concerns the number and organisation 
of these connections, so there is no need to address the content, which for all practical purposes 
can be presumed as “correct”. The answer to the second question is obtained through a detailed 
examination of the structure of the master map. It is shown that the chosen variables are capable 
of discerning concepts relevant to the content. The third question is answered by comparing the 
master map and students’ maps on the basis of structural variables. The master map and student 
map is often compared by verifying which nodes and links are similar and ignoring those in 
agreement with the master map. This kind of comparison focuses on the exact similarities in the 
maps. In this study, instead of requiring exact similarity, we base the comparison of the structural 
similarities on the six variables that characterise the structure.

The method of analysis of concept maps
The purpose of the method of structural analysis is to operationalise the relevant structural features 
of hierarchy, clustering and cyclicity. In this context, hierarchy means the property of branching, 
where a set of concepts can be reached equally easily from a given concept. Clustering here means 
a property where concepts tend to form an interconnected cluster, and cyclicity refers to a property 
found when a set of concepts are connected by a closed path. In what follows, one should remember 
that all nodes represent concept-like entities, and links represent procedures. This is an important 
difference from a traditional concept map presented by, for example, Novak & Gowin (1984), where 
linking words are verbs, and maps consist thus of concept-link-concept propositions.

The basic variables, indicate connections between nodes i and j, are denoted by binary values aij 
such that if nodes are connected aij = 1 and in the absence of a connection, aij = 0. In a map of n 
nodes the variables aij form a n n×  dimensional adjacency matrix a. The steps in analysing the 
structure are thus:
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1. Coding the connections in the map to a connectivity (adjacency) matrix.
2. Visual inspection using two different embeddings for each map. 
3. Calculating the values for variables characterising the topology of the map.
4. Comparison of the structure and content of the maps. 

Information about the directedness of the map connections is not taken into account, however, 
because in this study we focus only on the primary topological features.
 

Visual inspection: The embeddings 
In order to visualise the relevant topological features, it is useful to make the visual appearance of the maps 
comparable by removing any ambiguity associated with the graphical layout. This can be done by redrawing the 
maps so that the same rules for ordering the nodes are used in all cases. In graph theory this is called embedding 
the graph, and for the embeddings several well-defined methods are available. The embeddings used in the pre-
sent study were carried out using COMBINATORICA software (Pemmaraju & Skiena, 2006). The embedded 
maps included the same information as did the originals (i.e. they were isomorphic representations).

We used two different graph-embedding methods, both of which are standard visualisation methods used for 
network data (see e.g Pemmaraju & Skiena, 2006; Kolaczyk, 2009). The first method was spring-embedding, 
which is obtained when each link is presumed to behave like a “spring” (i.e. the linear restoring force when 
distance increases) and then minimising the total energy of the spring system. The energy is minimised iterati-
vely until a stable structure (i.e. minimum energy of tension) is achieved (for details, see Pemmaraju & Skiena, 
2006). The methods for representing the network as a “spring” network were chosen because linear forces are 
easy to handle, and simple iterative schemes of energy minimisation are available (Kolaczyk, 2009). Spring-
embedding serves the purpose of revealing visually how tightly certain concepts are connected, so it is suitable 
for visual inspection of the clustering and cyclical patterns. The second form of embedding was tree-embedding 
(sometimes also called root-embedding). In tree-embedding, the maps are redrawn as an ordered hierarchical 
tree with a certain node selected as a root. The nodes and links are then rearranged so that the nodes, which are 
equidistant (i.e. the same number of steps is needed to reach each node) from the root, are on the same hierar-
chical level. The hierarchical levels thus contain all those nodes which can be reached with the same number 
of steps from the root node. Tree embedding is therefore suitable for inspection of the hierarchical organisation 
of nodes. 

Definition of the variables 
Having recognised hierarchy, clustering and cyclicity as important features of concept maps we 
must find ways to operationalise these properties. The structural variables of importance (the 
subscript indicates that the measure is locally for a node k) are defined such that they correspond 
precisely to the topological features of clustering, cyclicity and hierarchy. Schematic examples of 
basic patterns such as clustering, cyclical and hierarchical appear in Figure 1.

Figure 1. Clustering, cyclicity and hierarchy (from left to right) illustrated. The core concept is em-
phasised as a black square, and the structural features are viewed locally from the point of view 
of the core concept.
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 The structural variables suitable for measuring the basic topological features of clustering, cycli-
city and hierarchy can be defined as follows (mathematical definitions appear in Table I). 

1. The degree of nodes Dk is the number of links connected to a given node k. The degree Dk 

contains the incoming and outgoing links. 
2. The clustering coefficient Ck measures the relative number of triangles of all triply connec-

ted neighbours around a given concept. Ck obtains values between 0 and 1, where 1 cor-
responds to the maximum number (depending on the number of neighbours) of triangles 
(all triply connected neighbours form triangles). 

3. The subgraph centrality SCk measures the cyclicity (i.e. the number of subgraphs that consti-
tute closed paths traversing through a node). A large value means that from the given node 
many other nodes can be reached through closed paths.  

4. The transit efficiency Tk measures the relative ease of passing through a given node. There 
are always several paths leading from node i to node j such that the path passes through 
node k, but some paths are shorter than others. 

5. Hierarchy Hk, which measures the degree of hierarchy, is calculated as the sum of all hierar-
chy levels, but is weighted by a number of connections within a given level. Hierarchical 
levels are obtained from tree-embedding, which contains information on the path lengths 
dij between nodes i and j (i.e. the number of steps needed to pass from i to j). For perfect 
tree-like hierarchies with no intralevel connections, Hk = 0; for fully connected structures, 
Hk = 1. For hierarchies with a tree-like backbone and a number of intralevel connections 
(typical of structures with cycles) hierarchy will always be Hk > 1.

The mathematical definitions of structural variables 1-3 are standard and are explained in greater 
detail in Costa, Rodrigues, Travieso and Villas Boas (2007) and Kolczyk (2009). The definition 
of variable 4 is a slightly modified version of harmonic distance (Costa et al., 2007; Kolaczyk, 
2009), whereas the hierarchy is defined according to McClure et al. 1999. All of variables 1-5 can 
be expressed in detailed mathematical definitions, which are summarised in Table I and can be 
calculated when the variables for aij (adjacency matrix a) are known.
 

Table I. Mathematical definitions of variables for measuring the topology of the concept maps. The 
subscripts k refer to kth node, the number of nodes is N, and the number of links M. The adja-
cency matrix is given by a and has elements aij. The matrix of the shortest paths is d (elements dij) 
and is obtained from hierarchical tree-embeddings. The tree-embedding, which begins from node 
k, also yields the number of hierarchical levels lk with nk(l) cross links.  

Variable Definition

Degree of node Dk ( )ik kii
a a+∑

Clustering  Ck /kj ij jk ik kji j i j
a a a a a

> >∑ ∑

Subgraph centrality SCk ( ) ( )( ) / ! / /kk ii i
i D N∑ ∑ia

Transit efficiency Tk ( ) 1

,
( ) /ik kj iji j
d d d

−
+∑

Hierarchy Hk ( ) /( 1)k kl
l n l N −∑

Importance Ik k k kC SC T× ×
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The variables in Table I provide information on the different but closely related structural aspects 
of the concept map and are therefore first calculated for each node in the map. This study will 
show that the coefficients Ck, SCk and Tk more or less correlate because they measure different 
aspects of the centrality of the node (concept) in the whole structure. This suggests that we can 
reduce the information by requiring that the node, which is structurally important and clusters 
other nodes around it, have a high value for all observables Ck, SCk, and Tk and thus define the 
importance of clustering and cyclicity, or simply the importance Ik, of the node as a product 

k k k kI C SC T= × ×
           
        (1)

This variable has a high value if the node gathers other nodes around it and if at the same time 
many other nodes are easily accessed through it. Therefore, in the analysis, the variables Ck, SCk 
and Tk are used only in the calculating of the compound variable Ik which has a high value when 
all variables measuring clustering and cyclicity have high values (high local and global intercon-
nectedness), but a low value when even one of the three variables measuring clustering has a value 
close to zero. The final evaluation and comparison of the structure are carried out on the basis of 
Dk, Hk and Ik.

Comparison of the concept maps: Connecting the structure and content
In order to compare the students’ concept maps with the above studied n = 17 and n = 34 master 
maps (denoted by MM), we needed to reduce the total information. In order to do that we concen-
trated only on Ik and Hk, and compared their values in the students’ maps to those in the master 
map by taking a “projection” of the variables. This is carried out by representing the variables as 
vectors X and calculating the projected value XP of the variables as a scalar-product  

1/ 2 1/ 2(1/ ) ( ) ; ( )PX L L= ⋅ = ⋅MM MM MMX X X X       
   

(2)

where L is the normalisation factor chosen such that the projected values (length of the vectors) 
are the same for the original maps as for the master maps. The purpose of the comparison is to 
determine whether the concepts and laws in student maps have a similar structural position to that 
of the master maps. This study will later show that different concepts in the master maps then fall 
into different classes, making it clear that the hierarchy Hk and importance Ik are directly related 
to the content relevance of the concepts.  Values of XP close to 1 now require that the value sets 
of the variables be close to each other in both the students’ concept maps and the master maps 
( i.e. the same concepts are in similar ways structurally important). A value of 0 means that no 
structural similarities exist, or alternatively that structurally important concepts differ entirely from 
the master maps. Comparison on the basis of the projection has the advantage that in it we first 
define the structural properties of interest (H and I) and then compare them on the basis of the 
corresponding structural variables. Then the structural analysis and the comparison both rest on 
the same theoretical footing, which allows us to couple both the content and structure. This finally 
motivates us to define the quality of the map as the product HP x IP. The justification for this type 
of comparison is discussed in greater detail in the next section.

Results
The sample of concept maps studied here consists of N = 43 maps. Of these maps, 4 were produ-
ced collaboratively by physics teacher instructors (physicists) and 39 were produced by physics 
student teachers. Of the 43 maps, 14 have n = 17 concepts and laws and 29 have n = 34 nodes 
(concepts and laws).  The largest number of links appears the master maps, with 28 links in the n 
= 17 map, and 69 links in the n = 34 map. All these maps are studied as one sample, because the 
properties of interest depend not on n, but rather on D.
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[162] 6(2), 2010

Examples of the concept maps
The master maps with n = 17 concepts appears in Figure 2, and an example of a n = 34 map is in 
Figure 3. These are the extensive maps contained in the sample, because they are constructed such 
that they contain all relevant connections (i.e. evaluated by the instructors as physically correct 
and logically sound) also found in the students’ concept maps. Several student map, also share a 
similar appearance and come close to the examples shown in Figures 2 and 3. In these kinds of 
maps, the most well connected concepts are typically linked to 3-5 other concepts. As explained 
before, all the connections shown in the map are experimental or modelling procedures formed on 
the basis of rules 3 and 4. Some of the most important nodes and connecting procedures appear 
in Table II with numbering that refers to Figures 2 and 3.  It is worth noting that the numbering of 
links denotes the sequence of steps in the construction of the concept maps.

Figure 2. The master map for n = 17 concepts in electrostatics. The map shows concepts (boxes), 
laws and principles (boxes with thick borders). Links are either operationalising experiments (E) 
or modelling procedures (either definition is denoted by D or by logical deductions L). Experimen-
tal setups (model) appear shown as elliptical, entity-like objects with rounded boxes.

The triangular and tree-like patterns are now visible in several places in the concept maps in Fi-
gures 2 and 3. These simple patterns are actually quite central to the maps, as is the content con-
tained in these patterns. In what follows, we discuss in some detail the patterns related Coulomb’s 
law and the electrical field.

Coulomb’s law. In map n = 17 the triangular pattern leading to Coulomb’s law (10) requires quali-
tative notions of a charge (1) and repulsive/attractive electrical forces (2) resulting from a charge 
(or charging). Then a particular idealised experiment, Coulomb’s experiment (E2) with spherical 
capacitors, can be designed. The outcome of this experiment is the symbolic form of Coulomb’s 
law. This finally enables one to measure of the charges and defines the quantity of the charge 
through Coulomb’s law. Experiment E17 leading to the capacitor law and the quantification of 
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capacitance is very similar in structure. Some experiments, such as E8 and E20, are considerably 
simpler, because in them only one aspect in the situation is changed. In E8, the test charge (small 
vs. large charge) is introduced, and its position is changed, thereby enabling one to define of elec-
trical field strength. In E20, the test charge is displaced in the field between the plates of a planar 
capacitor system, enabling one to generalise of mechanical work for electrical fields.

The electrical field. Most of the (deductive) modelling examples are designed to explain and clarify 
certain experimental situations and are often already included as part of the experimental proce-
dures. For example, in the n = 17 case shown in Figure 2, E2 is the model of radial force lines and 
point charges; E17 introduces the homogeneous field analogous to a gravitational field. Another 
type of modelling is used when the electrical field (16) is first introduced in L6 as a concept re-
dundant to electrical force (the force is divided by the smaller charge), but is then idealised and 
generalised so that it is understood and defined (L7) as an entity created by a charge and which 
is felt by another charge. This definition may use Coulomb’s law, which in turn enforces the po-
sition of Coulomb’s law as a basic law of electrostatics. The concept of field (16 and 6) may be 
based on the notion of the potential energy of electrical interaction by using an analogous model 
with a gravitational field (L10). This completes a triangular cycle consisting of nodes 16, 6 and 
8, and links L6, L7 and L10. The analogous model with a gravitational field is also used in the 
triangle consisting of nodes 6, 8 and 10, where the principle of energy conservation is applied to 
an electrical field (L10). When these structures are viewed a bit differently, we can recognise the 
hierarchical deductive chains (e.g. one beginning from 16 and continuing to 8 and then from 8 to 
7 and 9) through links L6, L15 and L11, where. L15 generalises the idea of mechanical work for 
the electrical field by using a line integral representation.  

Figure 3. The master map for n = 34 concepts in electromagnetism. Symbols appear as in Figure 2. 
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Concept maps in the embedded form
The spring-embedded forms of the large n = 34 and small n = 17 master maps appear in Figure 4, 
and two examples of tree-embedded forms also appear for comparison. From the spring embed-
dings we can see that the concept maps in Figures 2 and 3 are well connected, web-like structures. 
Now the triangular patterns are also clearly visible, and their role in clustering the nodes becomes 
evident. When maps are drawn in tree-embedded form, the hierarchical organization of nodes be-
comes visible by selecting one node at a time as a root concept. The hierarchical ordering reveals 
the subordination of nodes to a given root node. Some nodes have a greater capacity to produce 
hierarchical order than do others, which makes them more central to hierarchical organisation.

The sample of 39 student maps contains very different types of concept maps, the most extensive 
of which have a structure comparable to that of the master maps shown in Figures 2 and 3. Figures 
5 and 6 show some examples of n = 17 and n = 34 student cases.

Element Content or meaning

Nodes Quantities: charge (1/1), capacitance (2/14), electrostatic voltage 
(3/9), electrical force (4/-), potential of conducting body (5/-), 
strength of electrical field (6/-), work done against electric field (7/-
), potential energy in electrical field (8/6), potential in electrical field 
(9/7), force (-/3), electromotive force (-/8),  electric current (-/15), 
mechanical torque (-/18), magnetic dipole moment (-/22), 
mechanical work (-/24), magnetic potential energy (-/25), magnetic 
flux (-/26), inductance (-/28), Lorentz force (-/31), self-induction (-
/32), mutual inductance (-/33).
Entities: capacitor (15/-), electrical field (16/5), magnetic field (-
/21)
Laws: Coulomb’s law (10/4), capacitor law (11/13),  addition law of 
charges (13/-), law identifying the electrical field (-/11), Kirchhoff’s 
loop rule (-/16), Kirchhoff’s junction rule (-/17), Ampere’s law (-
/19), Biot-Savart law (-/20), moment law of magnetic dipole 
moment (-/23), law identifying the magnetic field (-/27), Faraday’s 
law of induction (-/29), Lenz’s law (-/30).
Principles: principle of energy conservation (14/12), [equipotential 
surfaces (17/-),], conservation of charges (12/2).
Experimental systems: capacitor system (-/10), coil system (-/34)

Modelling

Procedures
M

(only part)

M12: Electrical field of a capacitor system and transport of charge 
(analogy to gravitational field).
M25: Identification of magnetic flux modelling Biot-Savart law in 
terms of field lines.
M31: Modelling Ampere’s law by using current element 
interpreted in terms of the motion of charged particles.
M38: Modelling Faraday’s induction law using field lines. 

Experimental

procedures 

E

(only part)

E4: Coulomb’s experiment and quantification of charge and 
electrostatic force.
E21: Ampere’s experiment and quantification of current and force 
between current carrying wires.
E22: Biot’s and Savart’s experiment and quantification of field 
strength through magnetic moment.
E37: Faraday’s and Henry’s experiment with Helmholtz’s coils. 
Quantification of induction law in terms of voltage and current. 
Interpretation using magnetic flux. 

 
 
 
 
 

Table II: Examples of concepts and procedures in the instructors’ concept maps. The larger map 
with n = 34 nodes contains nearly all the concepts contained in the smaller map with n = 17. The 
numbering is given in the order (n = 17 / n = 34). In the map with n = 34 includes altogether 69 
procedures, only the most important of which appear in the table.
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Figure 5. The students’ n = 17 concept maps. Examples showing average number of links D = 2.9 
(left), D = 2.2 (middle) and D = 1.8 (right). The tree-embeddings starting from node 6 (electric field 
strength) appear in the lower panel.

Figure 4. The concept maps (Figure 2 and 3) drawn in spring-embedded form show inbuilt hierar-
chies. The upper row shows the n = 17 maps and the lower row the n= 34 maps.

Concept maps representing knowledge of physics
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Figure 6. The students’ n = 34 concept maps. Examples showing average number of links D = 
3.29 (left), D = 2.71 (middle) and D = 2.21 (right). The tree-embeddings starting from node 18 
(mechanical torque) appear in the lower panel.

The features displayed in Figures 5 and 6 are essentially those identified in recent studies of the 
qualitative analysis of concept maps, which emphasises the recognition of differences between 
web-like structures, branching structures and chain-like structures. All these qualitative notions 
based on visual inspection can now be operationalised and made quantitative, as the next section 
will show.

Connecting the structure to the content 
The values of all the local variables defined in Table I were measured first from the master maps 
of the n = 17 and n = 34 concepts. Table III shows the correlations between different variables 
for concept maps with the n = 17 and n = 34 concepts. It Evidently, the correlations between the 
variables Ck, SCk and Ik (the measures for clustering) are qualitatively similar, although the details 
depend on the size of the concept map. The results justify the notion that the importance variable 
Ik measures the overall importance of the node’s (concept’s) structural clustering capacity. The 
clustering measures correlate positively with each other, but negatively with the hierarchy, which 
shows that Ik and Hk indeed measure structurally different aspects of the node. 

Because Ik and Hk measure structurally different features, nodes with a high hierarchy are not 
always the concepts with the largest clustering capability or which are central to several cycles. 
This feature is seen particularly clearly if each node Hk is plotted against Ik as shown in Figure 7. 
For ease of comparison,  all values of small maps n = 17 are normalised so that average values of 
Hk and Ik are the same for large and small concept maps, which permits us to compare  the distri-
bution of Hk versus Ik in small and large concept maps. 
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The data for Hk and for Ik in Figure 7 can be grouped into three distinct clusters by agglomerative 
clustering analysis (Ruskeepää, 2004). Three different distance criteria (Euclidean, Squared Eucli-
dean and Manhattan) lead to exactly the same clustering as appears in Figure 7. The nodes are thus 
clustered in three distinct classes A, B and C on the basis of their roles in the topological structure 
of the maps. We can call these three classes clustering, hierarchy and connectivity classes.

A. The clustering class consists of nodes of high importance (Ik > 0.8) but only moderate hierarchy 
(0.7 < Hk < 1.8) values. These nodes (concepts) are highly central, but do not necessarily produce 
overarching hierarchies. Concepts found in this class include: potential energy (6/8), electrical 
field potential (7/9), and voltage (9/3), where the first/last number refers to the map with n = 34/n 
= 17 respectively (see also Figures 2-3 and Table II). Clearly, these concepts are physically highly 
important in connecting other concepts in the maps. 

Table III. Correlations (Pearson correlation coefficient) of the variables as defined in Table II and 
calculated for the master maps shown in Figures 3 and 4 (and in spring- and tree-embedded forms 
in Figure 5). The mean values appear in the first row.  

Concept maps representing knowledge of physics

Dk Ck SCk Ik Hk

n = 17 mean 3.29 0.21 1.35 0.41 1.01

SCk 0.95 0.53

Ik 0.76 0.78 0.87

Hk -0.64 -0.18 -0.70 -0.64

n = 34 mean 4.00 0.20 1.54 0.41 1.70

SCk 0.96 0.11

Ik 0.50 0.68 0.65

Hk -0.70 0.03 -0.74 -0.36
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B. The hierarchy class contains nodes with 1.4 < Hk < 2.9, but with a low clustering capacity in-
dicated by low values (Ik < 0.2). Nodes in this class thus produce the most extensive hierarchical 
tree-like structures. This class contains concepts such as the addition and conservation of charges 
(16/12 and 13), which by nature are ordering principles or fundamental properties, as well as 
concepts such as capacitance (14/2) and inductance (28). These concepts are found at the far end 
of the chain of connections if inductively produced, or at the beginning of the chain, if used as a 
deductive principle.

C. The connectivity class gets its name from the notion that concepts in this class play a notable 
role in connecting several concepts to each other; they are equally clustering and hierarchically or-
dering, with 0.2 < Ik < 0.8 and 1.0 < Hk < 2.3. This class contains most of the concepts in the mas-
ter map, central concepts such as the electrical field (16), the electrical force (4) and Coulomb’s 
law (10) in the case of N = 17, as well as Ampere’s law (19) and Lorentz’s force (31) in the case 
of N = 34. These concepts play a structurally central role and are responsible for producing the 
overall connectivity of the structure.

The different concepts shown in the master maps thus fall into different classes, and hierarchy Hk 
and importance Ik together clearly provide a lot of information about the structure of the maps; 
moreover, they are also directly related to the content relevance of the concepts. 

Similar information about the local structure is also available for the student concept maps consi-
dered in this study. In most cases, the concepts with an extensive hierarchy and high importance 
are the same as those in the case reported above. The comparison of student maps to the master 
maps was next carried out on the basis of the projection of the variables. The purpose of the com-
parison was to determine whether the concepts and laws in student maps have a similar structural 
position as those in the master maps. For example, we have seen that in the master maps the 
concepts of field and energy play central structural role, but the capacitor law is structurally less 
central. Figure 9 shows how the projected values for IP and HP depend on D.

Figure. 7. Hierarchy Hk plotted against importance Ik for each node k of the master map for n = 17 
and n = 34. The results for n = 34 are scaled (see text) for ease of comparisons. Different clusters 
found by using agglomerative clustering analysis are indicated with different symbols.
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Figure 8. The projected values of hierarchy HP (a), importance IP (b) and their product HP x IP (c) 
as they depend on D.  The projected values indicate the relative difference of the students’ maps 
from the master map (see text). The linear fit (solid line) to the data points is shown.  

The result in Figures 8a and 8b show that IP and HP are in some cases close to 1, which means that 
in these maps, the nodes behave very similarly to those classes A, B and C discussed above, and 
that the structure and content are coupled in a manner similar to that in these classes. Moreover, 
the higher the value of D, the greater will be the similarity and the smaller is the variance in the 
data. From this we can conclude that, with increasing D, the content and structure in student 
concept maps become increasingly connected in a manner similar to that in the master maps; the 
concepts which are central from the point of view of subject content are indeed structurally central 
also. Figure 8c shows how the product IP x HP clearly increases with increasing D, which suggests 
that concept maps with good content and good structure require large H and I. We can therefore 
conclude that knowledge represented in such maps is of good quality in so far as the reference 
point is the structure and content of the master maps. 

Discussion and conclusions 
The structural validity of the analysis concerns the question of whether the variables provide in-
formation on the structural aspect we are interested in. This question is answered by noting that 
degree D directly measures the richness of the content, whereas the structure is measured by the 
importance I of clustering and cyclicity and by hierarchy H. These variables are constructed such 
that they operationalise the qualitative structural features of interest (see Table II). 

The content validity is concerned with the question of whether the structurally important nodes 
are also important in regard to subject content. This is a slightly more problematic question. As 
Figure 8 shows, high values for I and H are associated with concepts (nodes) central to both struc-
ture and content at the same time. However, this conclusion rests on the analysis of the master 
maps and on their subsequent comparison to the student concept maps. These maps are compared 
by using a kind of projection of variables. Note that we have not chosen to compare them on the 
basis of detailed topological similarity by using, for example the adjacency matrix, which would 
correspond to the comparison suggested by Ruiz-Primo and Shavelson (1996) and also by Mc-
Clure et al. (1999). In this case, the connections of each concept to neighbouring concepts (also 
occasionally called semantic connectivity) in a “master map” are compared to the connections of 
the same concepts in a student map. Here we have chosen a more flexible comparison on the basis 
of structural similarity as measured through the variables I and H, without requiring detailed cor-
respondence in the connections or detailed similarity of semantic fields.  

Concept maps representing knowledge of physics
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The results discussed in this study show that the most notable feature of the designed concept 
maps is that they have a set of nodes with a high clustering capability with respect to other nodes. 
Such nodes are also central to cycles in the maps (i.e. they are part of cycles) and through them 
map navigation is possible. It is interesting to note that this is now an acceptable conclusion for 
physics concepts, in particular in the context domain of electricity and magnetism. The common 
assumption repeatedly expressed in the literature is that concept maps in physics are expected to 
be hierarchical rather than connected (Novak & Gowin, 1984; Ruiz-Primo & Shavelson, 1996; 
van Zele et al., 2004). However, our results show that in addition to hierarchy, clustering, and 
cyclicity are equally important features of concept maps. This notion is in concordance with the 
recent ideas of Safayeni et al. (2005) and Derbentseva et al. (2007), who suggest that connections 
represented in concept maps must be more complex than simple propositions. They have also 
noted that, “quantification” is a necessary condition for cyclicity. These notions are also in con-
cordance with the result that when design principles are based on procedures, which most often 
are quantitative experimental or modelling procedures, the concepts become interconnected and 
interdependent, and cyclicity becomes a consequence of this interdependence.

The research carried out here has concentrated mainly on finding the structural characteristics of 
concept maps and on developing methods for their analysis. Therefore, the bulk of our work is 
expected to impact research methodology rather than practices of using concept maps in teaching 
and instruction. However, the results also have implications for physics teaching and learning. 

First, the results reported here suggest that concept networks can quite accurately represent or-
ganised physics knowledge and demonstrate the important role of experimental procedures and 
modelling procedures in the organisation of knowledge. The requirement that the design prin-
ciples for making the connections be built on procedures apparently encourages students to think 
more carefully about the content of the connections and the consistency of the principles they are 
using in making the connections than about connecting the concepts simply by using propositio-
nal links. Focusing on the procedures certainly makes the students’ command of the subject area 
visible, but also helps to foster reflective thinking during the learning process. Moreover, design 
principles based on procedural rules may actually help students to achieve expert-level know-
ledge (compare with Kharatmal & Nagarjuna, 2008). The method for producing the conceptual 
networks discussed here has been in use in physics teacher education for some time and feedback 
from the students on its use has been much appreciated: many students have noted the advantages 
of being able to visualise complex conceptual connections by using the concept networks (Peh-
konen et al., 2009). 

Second, the results highlight the advantageous features of interconnectedness (clustering and cy-
clicity) because they offer greater potential to represent complex connections between concepts. 
Of course, several other previous studies have  pointed out the importance of connectivity and 
cyclicity as important qualitative features of concept maps (Kinchin et al. 2000, 2005; Derbentseva 
et al., 2007; Safayeni et al., 2005), and here we have shown that these important structural features 
can coexist with hierarchical ordering. 

 Third, concept networks reveal interesting possibilities for monitoring conceptual development 
(di Sessa & Sherin, 1998). The possibility to form well-defined quantitative measures, which cha-
racterize important structural features, provides tools for monitoring the development of expertise. 
The abilities of experts and advanced students are reflected in the capacity to increase the number 
of connections while at the same time maintaining a high degree of clustering and cyclicity in the 
networks. These features therefore seem to be the characteristics that signify conceptual develop-
ment when expertise is gained. 
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In summary, we have introduced here a quantitative method of analysis of concept maps which is 
capable of capturing important qualitative structural features of clustering, cyclicity and hierarchy. 
Such a methodological approach is needed in order to advance research focusing on concept maps 
that aim to understand which features of the maps may indicate beneficial learning processes. The 
fact that the method of analysis proposed here is necessarily more elaborate than simple visual 
inspection should not discourage the adoption of the method, if one aims for a better understan-
ding of concept maps and their unambiguous classification. These results suggest that only through 
research, which is attentive to a rich collection of qualitative structural features but which is at the 
same time sufficiently deep, detailed and quantitatively accurate, can we advance our understan-
ding of concept maps and of why they are such effective learning tools.
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